Saturday, 2 December 2017

الانحدار الحركة المتوسط ، أوضح


الانحدار الذاتي المتكامل المتوسط ​​المتحرك - أريما تعريف المتوسط ​​المتحرك المتكامل الانتصاري - أريما نموذج تحليل إحصائي يستخدم بيانات السلاسل الزمنية للتنبؤ بالاتجاهات المستقبلية. وهو شكل من أشكال تحليل الانحدار الذي يسعى للتنبؤ بالتحركات المستقبلية على طول المشي العشوائي الذي يبدو من قبل الأسهم والسوق المالية من خلال دراسة الاختلافات بين القيم في سلسلة بدلا من استخدام قيم البيانات الفعلية. ويشار إلى التأخر في سلسلة الاختلاف باسم الانحدار الذاتي، ويشار إلى التأخر في البيانات المتوقعة كمتوسط ​​متحرك. بريكينغ دون الانحدار التلقائي المتوسط ​​المتحرك المتكامل - أريما يشار إلى هذا النوع من النماذج عموما باسم أريما (p، d، q)، مع الأعداد الصحيحة التي تشير إلى الانحدار الذاتي. متكاملة ومتحركة أجزاء من مجموعة البيانات، على التوالي. أريما النمذجة يمكن أن تأخذ في الاعتبار الاتجاهات والموسمية. والدورات والأخطاء والجوانب غير الثابتة لمجموعة البيانات عند وضع التنبؤات. مقدمة إلى أريما: النماذج غير الموسمية أريما (p، d، q) التنبؤ بالمعادلة: نماذج أريما هي، من الناحية النظرية، الفئة الأكثر عمومية من النماذج للتنبؤ بالوقت والتي يمكن أن تكون 8220stationary8221 عن طريق الاختلاف (إذا لزم الأمر)، وربما بالتزامن مع التحولات غير الخطية مثل قطع الأشجار أو تفريغ (إذا لزم الأمر). المتغير العشوائي الذي هو عبارة عن سلسلة زمنية ثابت إذا كانت خصائصه الإحصائية ثابتة على مر الزمن. سلسلة ثابتة لا يوجد لديه اتجاه، والاختلافات حول المتوسط ​​لها اتساع مستمر، وأنه يتلوى بطريقة متسقة. أي أن أنماطها الزمنية العشوائية القصيرة الأجل تبدو دائما بنفس المعنى الإحصائي. ويعني الشرط الأخير أن علاقاته الذاتية (الارتباطات مع انحرافاته السابقة عن المتوسط) تظل ثابتة على مر الزمن، أو على نحو مكافئ، أن طيف القدرة لا يزال ثابتا على مر الزمن. ويمكن أن ينظر إلى متغير عشوائي لهذا النموذج (كالمعتاد) على أنه مزيج من الإشارة والضوضاء، والإشارة (إذا كانت ظاهرة) يمكن أن تكون نمطا للانعكاس السريع أو البطيء، أو التذبذب الجيبية أو بالتناوب السريع في الإشارة ، ويمكن أن يكون لها أيضا عنصر موسمي. ويمكن النظر إلى نموذج أريما على أنه 8220filter8221 يحاول فصل الإشارة عن الضوضاء، ومن ثم يتم استقراء الإشارة إلى المستقبل للحصول على التنبؤات. ومعادلة التنبؤ أريما لسلسلة زمنية ثابتة هي معادلة خطية (أي الانحدار من نوع) تكون فيها المتنبؤات متخلفة عن المتغير التابع والتخلفات المتراكمة في أخطاء التنبؤ. وهذا هو: القيمة المتوقعة ل Y قيمة ثابتة ومرجحة لقيمة واحدة أو أكثر من القيم الأخيرة Y ومجموع مرجح لقيمة أو أكثر من القيم الأخيرة للأخطاء. إذا كانت المتنبئات تتكون فقط من قيم متخلفة من Y. هو نموذج الانحدار الذاتي النقي (8220self-regressed8221) النموذج، وهو مجرد حالة خاصة من نموذج الانحدار والتي يمكن تركيبها مع برامج الانحدار القياسية. على سبيل المثال، نموذج الانحدار الذاتي الأول (8220AR (1) 8221) ل Y هو نموذج انحدار بسيط يتغير فيه المتغير المستقل فقط بفترة واحدة (لاغ (Y، 1) في ستاتغرافيكس أو YLAG1 في ريجرسيت). إذا كان بعض المتنبؤات متخلفة من الأخطاء، وهو نموذج أريما فإنه ليس نموذج الانحدار الخطي، لأنه لا توجد طريقة لتحديد 8220 فترة قصيرة 8217s error8221 كمتغير مستقل: يجب أن تحسب الأخطاء على أساس فترة إلى فترة عندما يتم تركيب النموذج على البيانات. ومن وجهة النظر التقنية، فإن مشكلة استخدام الأخطاء المتأخرة كمنبئات هي أن التنبؤات النموذجية 8217s ليست دالات خطية للمعاملات. رغم أنها وظائف خطية للبيانات السابقة. لذلك، يجب تقدير المعاملات في نماذج أريما التي تتضمن أخطاء متخلفة بطرق التحسين غير الخطية (8220hill-التسلق 8221) بدلا من مجرد حل نظام المعادلات. اختصار أريما لتقف على السيارات والانحدار المتكامل المتحرك المتوسط. ويطلق على الفترات المتأخرة في السلسلة المعيارية في معادلة التنبؤ مصطلحات كوتورغريسغريسيفيكوت، ويطلق على "أخطاء أخطاء التنبؤ" مصطلحات متوسط ​​التكلفة، ويقال إن السلسلة الزمنية التي يجب أن تكون مختلفة لتكون ثابتة، هي عبارة عن نسخة متقاربة من سلسلة ثابتة. نماذج المشي العشوائي ونماذج الاتجاه العشوائي، ونماذج الانحدار الذاتي، ونماذج التجانس الأسي كلها حالات خاصة لنماذج أريما. ويصنف نموذج أريما نوناسونال على أنه نموذج كوتاريما (p، d، q) كوت حيث: p هو عدد مصطلحات الانحدار الذاتي، d هو عدد الاختلافات غير الموسمية اللازمة للاستبانة، و q هو عدد الأخطاء المتوقعة في التنبؤات معادلة التنبؤ. يتم بناء معادلة التنبؤ على النحو التالي. أولا، اسمحوا y تدل على الفرق د من Y. مما يعني: لاحظ أن الفرق الثاني من Y (حالة d2) ليس الفرق من 2 منذ فترات. بدلا من ذلك، هو الفرق الأول من الأول الفرق. وهو التناظرية منفصلة من مشتق الثاني، أي تسارع المحلي للسلسلة بدلا من الاتجاه المحلي. من حيث y. معادلة التنبؤ العامة هي: هنا يتم تعريف المعلمات المتوسطة المتحركة (9528217s) بحيث تكون علاماتها سلبية في المعادلة، وفقا للاتفاقية التي قدمها بوكس ​​وجينكينز. بعض الكتاب والبرمجيات (بما في ذلك لغة البرمجة R) تعريفها بحيث لديهم علامات زائد بدلا من ذلك. عندما يتم توصيل الأرقام الفعلية في المعادلة، لا يوجد أي غموض، ولكن من المهم أن نعرف 8217s الاتفاقية التي يستخدمها البرنامج الخاص بك عندما كنت تقرأ الإخراج. في كثير من الأحيان يتم الإشارة إلى المعلمات هناك من قبل أر (1)، أر (2)، 8230، و ما (1)، ما (2)، 8230 الخ لتحديد نموذج أريما المناسب ل Y. تبدأ من خلال تحديد ترتيب الاختلاف (د) الحاجة إلى توثيق السلسلة وإزالة الخصائص الإجمالية للموسمية، ربما بالاقتران مع تحول استقرار التباين مثل قطع الأشجار أو الانقسام. إذا كنت تتوقف عند هذه النقطة والتنبؤ بأن سلسلة ديفيرنتد ثابت، لديك مجرد تركيب المشي العشوائي أو نموذج الاتجاه العشوائي. ومع ذلك، قد لا تزال السلسلة المستقرة ذات أخطاء ذات علاقة ذاتية، مما يشير إلى أن هناك حاجة إلى بعض المصطلحات أر (p 8805 1) أندور بعض مصطلحات ما (q 8805 1) في معادلة التنبؤ. ستتم مناقشة عملية تحديد قيم p و d و q الأفضل لسلسلة زمنية معينة في الأقسام اللاحقة من الملاحظات (التي توجد روابطها في أعلى هذه الصفحة)، ولكن معاينة لبعض الأنواع من نماذج أريما نونسونالونال التي تواجه عادة ما يرد أدناه. أريما (1،0،0) من الدرجة الأولى نموذج الانحدار الذاتي: إذا كانت السلسلة ثابتة و أوتوكوريلاتد، وربما يمكن التنبؤ بها باعتبارها متعددة من قيمتها السابقة، بالإضافة إلى ثابت. معادلة التنبؤ في هذه الحالة هي 8230 الذي يتراجع Y على نفسه متأخرا بفترة واحدة. هذا هو 8220ARIMA (1،0،0) ثابت 8221 نموذج. إذا كان متوسط ​​Y هو الصفر، فإن المصطلح الثابت لن يتم تضمينه. إذا كان معامل الانحدار 981 1 موجبا وأقل من 1 في الحجم (يجب أن يكون أقل من 1 من حيث الحجم إذا كان Y ثابتا)، يصف النموذج سلوك التراجع المتوسط ​​الذي ينبغي التنبؤ فيه بقيمة 8217s للفترة التالية لتكون 981 1 مرة بعيدا عن متوسط ​​هذه الفترة قيمة 8217s. وإذا كان 981 1 سلبيا، فإنه يتنبأ بسلوك التراجع عن طريق تبديل الإشارات، أي أنه يتوقع أيضا أن يكون Y أقل من متوسط ​​الفترة التالية إذا كان أعلى من متوسط ​​هذه الفترة. في نموذج الانحدار الذاتي من الدرجة الثانية (أريما (2،0،0))، سيكون هناك مصطلح T-2 على اليمين كذلك، وهكذا. واعتمادا على علامات ومقدار المعاملات، يمكن أن يصف نموذج أريما (2،0،0) نظاما له انعكاس متوسط ​​يحدث بطريقة تتأرجح جيبيا، مثل حركة الكتلة في فصل الربيع الذي يتعرض للصدمات العشوائية . أريما (0،1،0) المشي العشوائي: إذا كانت السلسلة Y ليست ثابتة، أبسط نموذج ممكن لذلك هو نموذج المشي العشوائي، والتي يمكن اعتبارها حالة الحد من نموذج أر (1) التي الانتكاس الذاتي معامل يساوي 1، أي سلسلة مع بلا حدود بطيئة متوسط ​​الانعكاس. ويمكن كتابة معادلة التنبؤ لهذا النموذج على النحو التالي: حيث يكون المصطلح الثابت هو متوسط ​​التغير من فترة إلى أخرى (أي الانجراف الطويل الأجل) في Y. ويمكن تركيب هذا النموذج كنموذج انحدار لا اعتراض يقوم فيه الفرق الأول من Y هو المتغير التابع. وبما أنه يشمل (فقط) اختلافا غير منطقي ومدة ثابتة، فإنه يصنف على أنه نموذج كوتاريما (0،1،0) مع ثابت. كوت نموذج المشي العشوائي بدون الانجراف سيكون أريما (0،1، 0) نموذج بدون نموذج أريسترجيسد من الدرجة الأولى (1-1،0): إذا كانت أخطاء نموذج المشي العشوائي مترابطة تلقائيا، ربما يمكن إصلاح المشكلة بإضافة فاصل واحد للمتغير التابع إلى معادلة التنبؤ - أي وذلك بتراجع الفارق الأول من Y على نفسه متأخرا بفترة واحدة. وهذا من شأنه أن يسفر عن معادلة التنبؤ التالية: التي يمكن إعادة ترتيبها إلى هذا هو نموذج الانحدار الذاتي من الدرجة الأولى مع ترتيب واحد من اختلاف غير منطقي ومدة ثابتة - أي. وهو نموذج أريما (1،1،0). أريما (0،1،1) دون تمهيد الأسي المستمر المستمر: اقترح استراتيجية أخرى لتصحيح الأخطاء أوتوكوريلاتد في نموذج المشي العشوائي من قبل نموذج تمهيد الأسي بسيط. تذكر أنه بالنسبة لبعض السلاسل الزمنية غير المستقرة (مثل تلك التي تظهر تقلبات صاخبة حول متوسط ​​متباينة ببطء)، فإن نموذج المشي العشوائي لا يؤدي فضلا عن المتوسط ​​المتحرك للقيم السابقة. وبعبارة أخرى، فبدلا من أخذ الملاحظة الأخيرة كتوقعات الملاحظة التالية، من الأفضل استخدام متوسط ​​الملاحظات القليلة الأخيرة من أجل تصفية الضوضاء وتقدير المتوسط ​​المحلي بدقة أكبر. يستخدم نموذج التمهيد الأسي البسيط المتوسط ​​المتحرك المرجح أضعافا مضاعفة للقيم السابقة لتحقيق هذا التأثير. يمكن كتابة معادلة التنبؤ لنموذج التمهيد الأسي البسيط في عدد من الأشكال المكافئة رياضيا. واحد منها هو ما يسمى 8220 خطأ التصحيح 8221 النموذج، الذي يتم تعديل التوقعات السابقة في اتجاه الخطأ الذي قدمه: لأن ه ر - 1 ذ ر - 1 - 374 ر - 1 حسب التعريف، يمكن إعادة كتابة هذا كما في : وهو أريما (0،1،1) مع معادلة التنبؤ المستمر مع 952 1 1 - 945. وهذا يعني أنه يمكنك تناسب تمهيد الأسي بسيط من خلال تحديده كنموذج أريما (0،1،1) دون ثابت، ويقدر معامل ما (1) المقدر 1-ناقص ألفا في صيغة سيس. نذكر أن متوسط ​​عمر البيانات في التنبؤات قبل فترة واحدة هو 945 1 في نموذج سيس، وهذا يعني أنها سوف تميل إلى التخلف عن الاتجاهات أو نقاط التحول بنحو 1 945 فترات. ويترتب على ذلك أن متوسط ​​عمر البيانات في التنبؤات السابقة بفترة زمنية واحدة لنموذج أريما (0،1،1) بدون نموذج ثابت هو 1 (1 - 952 1). إذا، على سبيل المثال، إذا كان 952 1 0.8، متوسط ​​العمر هو 5. كما 952 1 النهج 1، يصبح النموذج أريما (0،1،1) بدون ثابت متوسط ​​متحرك طويل الأجل جدا، و 952 1 النهج 0 يصبح نموذج المشي العشوائي دون الانجراف. ما هو أفضل طريقة لتصحيح الارتباط الذاتي: إضافة المصطلحات أر أو إضافة مصطلحات ما في النموذجين السابقين نوقش أعلاه، تم إصلاح مشكلة أخطاء أوتوكوريلاتد في نموذج المشي العشوائي بطريقتين مختلفتين: عن طريق إضافة قيمة متخلفة من سلسلة مختلفة إلى المعادلة أو إضافة قيمة متأخرة لخطأ التنبؤ. النهج الذي هو أفضل قاعدة من الإبهام لهذا الوضع، والتي سيتم مناقشتها بمزيد من التفصيل في وقت لاحق، هو أن الارتباط الذاتي الإيجابي عادة ما يعامل بشكل أفضل عن طريق إضافة مصطلح أر إلى النموذج وعادة ما يعامل الارتباط الذاتي السلبي عن طريق إضافة ما المدى. في سلسلة الأعمال والاقتصاد الزمني، وغالبا ما تنشأ الارتباط الذاتي السلبي باعتباره قطعة أثرية من الاختلاف. (بشكل عام، يقلل الاختلاف من الارتباط الذاتي الإيجابي وربما يتسبب في التحول من الارتباط الذاتي الموجب إلى السالب). لذلك، فإن نموذج أريما (0،1،1)، الذي يكون فيه الاختلاف مصحوبا بمصطلح ما، غالبا ما يستخدم من أريما (1،1،0) نموذج. أريما (0،1،1) مع تمهيد الأسي المستمر المستمر مع النمو: من خلال تنفيذ نموذج سيس كنموذج أريما، كنت في الواقع كسب بعض المرونة. أولا وقبل كل شيء، ويسمح معامل ما (1) المقدرة لتكون سلبية. وهذا يقابل عامل تمهيد أكبر من 1 في نموذج سيس، وهو ما لا يسمح به عادة إجراء تركيب نموذج سيس. ثانيا، لديك خيار إدراج مدة ثابتة في نموذج أريما إذا كنت ترغب في ذلك، من أجل تقدير متوسط ​​الاتجاه غير الصفر. ويشتمل نموذج أريما (0،1،1) الثابت على معادلة التنبؤ: إن التنبؤات ذات الفترة الواحدة من هذا النموذج متشابهة نوعيا مع نموذج نموذج سيس، إلا أن مسار التنبؤات الطويلة الأجل عادة ما يكون (المنحدر يساوي مو) بدلا من خط أفقي. أريما (0،2،1) أو (0،2،2) دون تمهيد أسي خطية ثابتة: نماذج التجانس الأسية الخطية هي نماذج أريما التي تستخدم اثنين من الاختلافات نونسوناسونال بالتزامن مع الشروط ما. والفرق الثاني لسلسلة Y ليس مجرد الفرق بين Y وتخلف نفسها بفترتين، وإنما هو الفرق الأول من الاختلاف الأول - أي. التغيير في تغيير Y في الفترة t. وبالتالي، فإن الفارق الثاني من Y في الفترة t يساوي (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. والفرق الثاني من الدالة المنفصلة يشبه مشتق ثان من دالة مستمرة: يقيس الدالة كوتاكسيليركوت أو كوتكورفاتوريكوت في الدالة عند نقطة معينة من الزمن. ويتنبأ نموذج أريما (0،2،2) دون توقع ثابت بأن الفارق الثاني من السلسلة يساوي دالة خطية لآخر خطأين متوقعين: يمكن إعادة ترتيبهما على النحو التالي: حيث يكون 952 1 و 952 2 هما (1) و ما (2) معاملات. هذا هو نموذج التجانس الأسي العام الخطية. أساسا نفس نموذج Holt8217s، و Brown8217s نموذج هو حالة خاصة. ويستخدم المتوسطات المتحركة المرجح أضعافا مضاعفة لتقدير كل من المستوى المحلي والاتجاه المحلي في هذه السلسلة. تتلاقى التوقعات على المدى الطويل من هذا النموذج مع خط مستقيم يعتمد ميله على متوسط ​​الاتجاه الملحوظ نحو نهاية السلسلة. أريما (1،1،2) دون ثابت خطي الاتجاه الاتجاه الأسي تمهيد. ويوضح هذا النموذج في الشرائح المصاحبة على نماذج أريما. فإنه يستقلب الاتجاه المحلي في نهاية السلسلة ولكن تسطح بها في آفاق التنبؤ أطول لإدخال مذكرة من المحافظة، وهي الممارسة التي لديها الدعم التجريبي. انظر المقال على كوهي في ذي تريند تريند وركسكوت غاردنر أند ماكنزي أند ذي كوغولدن رولكوت أرتيسترونغ إت آل. للتفاصيل. فمن المستحسن عموما التمسك النماذج التي لا يقل عن واحد من p و q لا يزيد عن 1، أي لا تحاول أن تناسب نموذج مثل أريما (2،1،2)، وهذا من المرجح أن يؤدي إلى الإفراط في تجهيز وكومكومون-فاكتوركوت القضايا التي نوقشت بمزيد من التفصيل في الملاحظات على الهيكل الرياضي لنماذج أريما. تنفيذ جدول البيانات: من السهل تنفيذ نماذج أريما مثل تلك الموضحة أعلاه على جدول بيانات. ومعادلة التنبؤ هي مجرد معادلة خطية تشير إلى القيم السابقة للسلاسل الزمنية الأصلية والقيم السابقة للأخطاء. وهكذا، يمكنك إعداد جدول بيانات تنبؤ أريما عن طريق تخزين البيانات في العمود ألف، وصيغة التنبؤ في العمود باء، والأخطاء (البيانات ناقص التنبؤات) في العمود C. وستكون صيغة التنبؤ في خلية نموذجية في العمود باء ببساطة تعبير خطي يشير إلى القيم في الصفوف السابقة من العمودين A و C مضروبا في معاملات أر أو ما المناسبة المخزنة في خلايا أخرى في جدول البيانات. A ريما لتقف على نماذج معدل الانحدار المتكامل للانحدار الذاتي. المتغير أحادي المتغير (أريفا فيكتور) أريما هي تقنية التنبؤ التي تقوم بتطوير القيم المستقبلية لسلسلة تعتمد بشكل كامل على الجمود الخاص بها. تطبيقه الرئيسي هو في مجال التنبؤ على المدى القصير تتطلب ما لا يقل عن 40 نقطة البيانات التاريخية. وهو يعمل بشكل أفضل عندما تظهر بياناتك نمطا مستقرا أو متسقا مع مرور الوقت مع الحد الأدنى من القيم المتطرفة. في بعض الأحيان تسمى بوكس-جينكينز (بعد المؤلفين الأصليين)، أريما عادة ما تكون متفوقة على الأساليب التمهيد الأسي عندما تكون البيانات طويلة إلى حد معقول، والارتباط بين الملاحظات الماضية مستقرة. إذا كانت البيانات قصيرة أو متقلبة للغاية، ثم بعض طريقة تمهيد قد تؤدي بشكل أفضل. إذا لم يكن لديك ما لا يقل عن 38 نقطة بيانات، يجب عليك النظر في بعض الطرق الأخرى من أريما. الخطوة الأولى في تطبيق منهجية أريما هي التحقق من الاستبانة. ويعني الاستقرارية أن المسلسل لا يزال على مستوى ثابت إلى حد ما مع مرور الوقت. إذا كان هناك اتجاه، كما هو الحال في معظم التطبيقات الاقتصادية أو التجارية، ثم البيانات الخاصة بك ليست ثابتة. وينبغي أن تظهر البيانات أيضا تباينا ثابتا في تقلباتها مع مرور الوقت. وينظر إلى هذا بسهولة مع سلسلة التي موسمية بشكل كبير وتنمو بمعدل أسرع. في مثل هذه الحالة، فإن الصعود والهبوط في الموسمية سوف تصبح أكثر دراماتيكية مع مرور الوقت. وبدون استيفاء شروط الاستبقاء هذه، لا يمكن حساب العديد من الحسابات المرتبطة بالعملية. إذا كانت مؤامرة رسومية من البيانات تشير إلى نونستاتيوناريتي، ثم يجب أن الفرق السلسلة. الفرق هو وسيلة ممتازة لتحويل سلسلة غير ثابتة إلى واحدة ثابتة. ويتم ذلك بطرح الملاحظة في الفترة الحالية من الفترة السابقة. إذا تم هذا التحول مرة واحدة فقط لسلسلة، ويقول لك أن البيانات قد اختلفت أولا. هذه العملية تلغي أساسا الاتجاه إذا سلسلة الخاص ينمو بمعدل ثابت إلى حد ما. إذا كان ينمو بمعدل متزايد، يمكنك تطبيق نفس الإجراء والفرق البيانات مرة أخرى. البيانات الخاصة بك ثم سيكون ديفيرنسد الثانية. أوتوكوريلاتيونس هي قيم رقمية تشير إلى كيفية ارتباط سلسلة البيانات نفسها بمرور الوقت. وبشكل أدق، فإنه يقيس مدى ارتباط قيم البيانات في عدد محدد من الفترات المتباعدة ببعضها البعض بمرور الوقت. وعادة ما يطلق على عدد الفترات المتبقية الفارق الزمني. على سبيل المثال، يقيس الارتباط الذاتي عند التأخر 1 كيفية ارتباط القيم 1 لفترة متباعدة ببعضها البعض طوال السلسلة. ويقيس الارتباط الذاتي عند التأخر 2 كيفية ارتباط البيانات بفترتين منفصلتين طوال السلسلة. قد تتراوح أوتوكوريلاتيونس من 1 إلى -1. تشير قيمة قريبة من 1 إلى وجود ارتباط إيجابي عال في حين أن قيمة قريبة من -1 تعني ارتباطا سلبيا كبيرا. وغالبا ما يتم تقييم هذه التدابير من خلال المؤامرات الرسومية تسمى كوريلاغاغرامز. ويحدد الرسم البياني المترابط قيم الترابط التلقائي لسلسلة معينة عند فترات تأخر مختلفة. ويشار إلى ذلك على أنه دالة الترابط الذاتي وهي مهمة جدا في أسلوب أريما. محاولات منهجية أريما لوصف التحركات في سلسلة زمنية ثابتة كدالة لما يسمى بارامترات الانحدار الذاتي والمتوسط ​​المتحرك. ويشار إلى هذه على النحو المعلمات أر (أوتوريجيسيف) ومعلمات ما (المتوسطات المتحركة). يمكن كتابة نموذج أر مع معلمة واحدة فقط ك. (X) (t) A (1) X (t-1) E (t) حيث تكون السلسلة الزمنية X (t) قيد التحقيق A (1) معلمة الانحدار الذاتي للترتيب 1 X (t-1) (t) مصطلح خطأ النموذج يعني هذا ببساطة أن أي قيمة معينة X (t) يمكن تفسيرها بوظيفة معينة من قيمتها السابقة X (t-1)، بالإضافة إلى بعض الأخطاء العشوائية غير القابلة للتفسير، E (t). إذا كانت القيمة المقدرة ل A (1) .30، فإن القيمة الحالية للمسلسل ستكون مرتبطة ب 30 من قيمته قبل 1. وبطبيعة الحال، يمكن أن تكون مرتبطة سلسلة إلى أكثر من مجرد قيمة واحدة الماضية. على سبيل المثال، X (t) A (1) X (t-1) A (2) X (t-2) E (t) يشير هذا إلى أن القيمة الحالية للسلسلة هي مزيج من القيمتين السابقتين مباشرة، X (t-1) و X (t-2)، بالإضافة إلى بعض الخطأ العشوائي E (t). نموذجنا هو الآن نموذج الانحدار الذاتي للنظام 2. تتحرك متوسط ​​نماذج: وهناك نوع الثاني من نموذج بوكس ​​جينكينز يسمى نموذج المتوسط ​​المتحرك. على الرغم من أن هذه النماذج تبدو مشابهة جدا لنموذج أر، والمفهوم وراءها هو مختلف تماما. أما المعلمات المتوسطة المتحركة فتتصل بما يحدث في الفترة t فقط بالأخطاء العشوائية التي حدثت في الفترات الزمنية السابقة أي E (t-1) و E (t-2) وما إلى ذلك بدلا من X (t-1) و X ( t-2)، (شت-3) كما هو الحال في نهج الانحدار الذاتي. ويمكن كتابة نموذج متوسط ​​متحرك بمصطلح "ما" على النحو التالي. (T) 1 (E) (T) E (t) يطلق على المصطلح B (1) ما من النظام 1. وتستخدم الإشارة السلبية أمام المعلمة للاتفاقية فقط وعادة ما يتم طباعتها خارج معظم السيارات بشكل تلقائي. يقول النموذج أعلاه ببساطة أن أي قيمة معينة من X (t) ترتبط مباشرة فقط إلى الخطأ العشوائي في الفترة السابقة، E (t-1)، وإلى مصطلح الخطأ الحالي، E (t). وكما هو الحال بالنسبة لنماذج الانحدار الذاتي، يمكن تمديد نماذج المتوسط ​​المتحرك لتشمل هياكل ذات ترتيب أعلى تغطي مجموعات مختلفة وأطوال متوسط ​​متحرك. وتسمح منهجية أريما أيضا بنماذج يمكن أن تدمج معا متوسطات الانحدار الذاتي والمتوسط ​​المتحرك معا. وغالبا ما يشار إلى هذه النماذج على أنها نماذج مختلطة. على الرغم من أن هذا يجعل أداة التنبؤ أكثر تعقيدا، قد هيكل محاكاة حقا سلسلة أفضل وإنتاج توقعات أكثر دقة. نماذج نقية تشير ضمنا إلى أن بنية تتكون فقط من أر أو ما المعلمات - ليس على حد سواء. وعادة ما تسمى النماذج التي تم تطويرها من خلال هذا النهج نماذج أريما لأنها تستخدم مزيج من الانحدار الذاتي (أر) والتكامل (I) - مشيرا إلى عملية عكسية عكسية لإنتاج التنبؤات، والمتوسط ​​المتحرك (ما) العمليات. ويشار عادة إلى نموذج أريما على أنه أريما (p، d، q). ويمثل ذلك ترتيب مكونات الانحدار الذاتي (p) وعدد مشغلي الاختلاف (d) وأعلى ترتيب للمتوسط ​​المتحرك. على سبيل المثال، أريما (2،1،1) يعني أن لديك نموذج ترتيب الانحدار الثاني من الدرجة الثانية مع العنصر المتوسط ​​المتحرك الأول ترتيب الذي تم اختلاف سلسلة مرة واحدة للحث على الاستقرارية. اختيار الحق مواصفات: المشكلة الرئيسية في الكلاسيكية بوكس-جينكينز تحاول أن تقرر أي مواصفات أريما لاستخدام - i. e. كم عدد المعلمات أر أو ما لتشمل. هذا هو ما خصص الكثير من بوكس-جينكينغز 1976 لعملية تحديد الهوية. وهو يعتمد على التقييم البياني والعددي لعينة الارتباط الذاتي ووظائف الترابط الذاتي الجزئي. حسنا، لنماذج الأساسية الخاصة بك، والمهمة ليست صعبة للغاية. لكل منها وظائف الارتباط الذاتي التي تبدو بطريقة معينة. ومع ذلك، عندما ترتفع في التعقيد، لا يتم الكشف عن أنماط بسهولة. لجعل الأمور أكثر صعوبة، تمثل بياناتك عينة من العملية الأساسية فقط. وهذا يعني أن أخطاء أخذ العينات (القيم المتطرفة، خطأ القياس، وما إلى ذلك) قد تشوه عملية تحديد الهوية النظرية. هذا هو السبب في النمذجة أريما التقليدية هو فن بدلا من العلم.

No comments:

Post a Comment